1. 教育培训机构的价格
不清楚,你要找什么样的教育培训机构?因为培训机构按照他所培训的业务和年龄层次所实物收费都是不一样的,所所以说教育机构的价格也随之它的业务范围,能力和师资水平,价格也是不一样的,所以说,首先要明确你要找的什么样的教育机构才能来谈论什么样的价格
2. 培训的实际价值是什么
培训就是培养+训练,通过培养加训练使受训者掌握某种技能的方式。国内培训版主要以技权能培训为主,侧重于行为之前。
培训是给有经验或无经验的受训者传授其完成某种行为必需的思维认知、基本知识和技能的过程。基于认知心理学理论可知,职场正确认知(内部心理过程的输出)的传递效果才是决定培训效果好坏的根本。
简单理解,培训约等于教学。即对某项技能的教学服务。如一些专业的培训班。也可以理解为培训即提供教学。
培训的实际价值是为了达到统一的科学技术规范、标准化作业,通过目标规划设定、知识和信息传递、技能熟练演练、作业达成评测、结果交流公告等现代信息化的流程,让受训者通过一定的教育训练技术手段,达到预期的水平提高目标,提升战斗力,个人能力,工作能力的训练。
3. 在正规的培训机构中,怎样体现自己的价值
严格遵从职业操守,对待客户认真负责,利益虽然要取,但是要适度,同内时提供给客户容有针对性的,独到的管理、培训知识理念,用有深度的、高含量的培训产品换取价值。
做好自己,自行研发课程不哟居于形式、表面吸引点,应该有深度。
个人意见,抛砖引玉。
4. 培训机构课程如何合理定价
一般机构课程在定价的时候都应该设计4种收费标准,分别是:
标价;
新生价;
老带新价;
老生价。
标价是对外宣传的价格,一般都不是最终成交价格,但标价却一定程度上反映出课程的价值,就好比商场一件标价3000的衣服你第一感觉会认为这件衣服值3000,但如果标价99,你也只认为就值99;
新生价是指新报名学员所享受的优惠价,为了促成当天或当节课的成交,可以设计一个成交主张,比如现在报名立减500元,并且赠送一台价值900元学习设备等;
老带新价是指通过老学员介绍所享受的折扣价,这个价一定要比自然来的新生的价格优惠,并且每成交一个赠送老学员1000元购物积分,注意这里是购物积分,不是现金,因为可以对接积分商城,有些积分商城都是一折购物,但那些商品在京东和淘宝上的价格却是原价,也就是说1000元积分实际的成本只有100元,但给人感觉是买了1000元的东西;
老生价是指老学员继续报名或续费的价格,老生价要比老带新的价格还要低。因为这个工作是要提前设计的,这里我们要做的是学分抵学费。学分怎么来?就是学员的上课表现中奖励的,这样的设计有两个好处,一是能通过学分便于管理学员,让学员可以达到一个最佳的学习效果,二是能够将学员锁定,产生二次消费。
5. 如何给教育培训机构估值
假设A机构在财年的年收入是1000万,那么税前净利润应该是在200万左右,那么税前估值应该在1000万左右。 这个估值对于传统行业是比较合理的,因为如果按照企业净利润的6倍来估值的话。那么意味着:在企业保持稳定的情况下,6年收回投入,每年的投资回报率是17%左右。这个投资回报率相对于投资如此小规模、不成熟的教育培训机构,风险是显得尤其的高。而当我接触到一些年收入在200万,利润50万的机构动不动就要1000万的估值。
20倍的估值意味着什么?在没有成长的情况下,每年投资回报率只有5%,还不如存在银行呢。 传统行业就是传统行业,成本在收入中的比例是固定的。你不是互联网,人家把结构搭好,品牌做好了以后,1个人用和1亿人用的成本是一样的,人家的利润和收入是可以成几何级数的增长的。 当然对于一些对自己极其有自信的、或者企业确实是在高速成长的机构,往往会以本财年,甚至是下一个财年的收入和预算来评估企业的价值。假设A机构08财年的实际收入-实际利润是1000万-200万,09财年预算收入2000万-预算利润400万,10财年预算收入5000万-预算利润1000万。
以学历教育或成人继续教育为目的的教育培训机构需要有场地的要求及师资的要求,需要教育主管部门给予认证并且取得社会力量办学资格方可营业,其培训课程价格需要核算并报教育部门批准,增加课程或改变收费需要向教育部门申请并获得批准后才可改变。
6. 数学教育的价值
数学教育的科学价值
对于数学教育,时下人们谈论较多的是它的人文价值。这的确需要进一步加强研究和实践,却似乎有点冷落对数学教育科学价值的研究。这是否表明数学教育的科学价值在理论上已经清楚、在实践中已经解决了呢?笔者认为并不尽然!在数学教育实践中仍需要加强对学生科学意识、科学观、科学精神的培养,需要加强数学与科学的联系;在理论上仍需要澄清数学课程中数学的“科学性”与“人文性”(这里的“人文性”是指数学教育的人文性,而不仅限指数学的人文性)的关系,确立数学课程改革中的“数学科学价值”定位;等等。本文主要探讨数学的科学价值、数学教育的科学素养价值和数学教育的“数学科学价值”。
一、数学的科学价值
数学的科学价值,是指数学对自然科学的产生与发展的作用和意义。自19世纪20年代以来,数学的研究对象和方法在本质上越来越凸现出与(自然)科学的区别,数学也就从科学中分离出来,自立“门户”,自成体系。然而,这种分离并不是数学与科学的割裂,而是表明数学的应用更加广泛,不仅包括(自然)科学,也包括政治学、历史学、经济学、语言学、军事学等人文、社会科学,以及音乐、绘画、雕塑等艺术科学,还涉及技术、经济建设乃至社会的许多领域。特别是当今时代,科学技术迅猛发展,科学数学化的趋势越来越明显,现代科学正朝着广泛应用数学的方向发展。
数学对于科学的价值,表现在诸如物理、化学、生物、天文等学科的产生和发展的许多方面。如果从数学的要素来看,具体表现在以下四个方面。
(一)数学知识的应用
在科学的产生和发展中,应用数学知识是最为直接的,也是最为广泛的。这从天文学的发展可以窥其一斑。哥白尼在提出日心说时,并没有多少观测证据,甚至在某种程度上,一些结果还不如原来的地心说准确,正是他依据数学的理论、运用数学的方法建立起新的天文学理论;开普勒则进一步在天文学上应用数学,他利用第谷、布拉赫的大量观测数据,通过大量的计算和数学分析工作,其结果使得他抛弃了从古希腊人开始就一直认为行星具有圆形轨道的观点,从而建立起新的行星运行理论;到了伽利略和笛卡儿那里,数学就成了一般的科学方法。在19世纪,数学应用的成果更为突出:高斯提出行星轨道的计算方法(1809),泊松建立计算电势的微分方程(1811)和理想气体的状态方程(1823),傅立叶利用三角级数研究热传导(1822),麦克斯韦用数学语言表达法拉第的力线概念(1856)并建立电磁理论,预言电磁波的存在(1864),等等。此外,科学与数学的结合产生了一些交叉和边缘学科,如数学物理方程(方法)、生物数学、数学生态学等。
(二)数学(符号)语言的应用
数学是科学的主要术语。数学语言与科学之间的联系,早在古希腊自然哲学中就已经凸显。“希腊哲学已经发现了一种新的语言——数的语言。这个发现标志着我们近代科学概念的诞生”。在现代,把数学“看成一种新的强有力的符号体系,对一切科学的目的来说,这种符号体系比言语的符号体系具有无比的优越性”〔1〕。享有“近代自然科学之父”尊称的伽利略也认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如果不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。比如,当代物理学的基本规律——牛顿力学的运动规律,牛顿万有引力定律,电磁场原理,热力学第一、第二定律,统计力学原理,狭义相对论原理,广义相对论原理,量子力学定律,电子的相对论波动原理,规范场论等的表述,如果没有数学语言,是不可想像的。
(三)数学思想方法的应用
数学计算、数学证明、数学模型等方法对科学的产生起着至关重要的作用。比如,计算是各门科学(技术)中最为重要的方法之一,1846年勒维耶通过计算预见海王星,在科学史上传为佳话。在现代科学中,由于数学思想方法的广泛应用,从而产生了大量与计算有关的边缘科学和交叉科学,如计算力学、计算流体力学、计算结构力学、计算物理学、计算化学、计算生物学、计算胚胎学、计算地质学、计算地震学、数值气象学等。
(四)数学思维方式的应用
诸如符号化、数学化、抽象化、公理化、结构化、逻辑分析、推理计算、从数据进行推断、优化等数学思维方式在科学理论的建构和发展中起着非常重要的作用。比如,牛顿的《自然哲学的数学原理》、拉格朗日的《解析力学》、克劳修斯的《热的机械运动理论》等科学史上的奠基性的著作都是运用公理化的方式写成的。又如生物学的发展,起初,它“不得不像其他自然科学一样,从对事实的简单分类开始……”,其后逐渐“进展到了一个‘演绎公式化理论’的新阶段”。〔2〕
二、数学教育的科学素养价值
数学教育的科学素养价值,是指数学教育对形成人的科学素养(如科学意识,科学思想、方法,科学精神,科学态度,科学品质)的意义和作用。数学教育之所以具有这种价值,是因为数学仍保留着科学的许多特性,如“都具有对可以理解的规则的信念;想像力和严格逻辑的相互影响;诚实与公开的思想;同行评论的极端重要性;第一个取得重大发现的价值;国际范围和随着大功率电子计算机的发展,运用电子计算机技术,开辟新的研究领域”。〔3〕具体说来,它有如下几个特性。
(一)数学中的科学特性
早在古希腊时代,数学与科学本是同一的;近现代数学与科学都是寻找一般规律和关系的学问。“世界是可被认识的”的科学观,科学的“真、善、美”的本质观,科学理论评价的“外部的确认”与“内部的完美”两条标准,科学知识的发展性和不确定性,科学探索中的“观察”“实验”“验证”“证据”,科学的解释和预测功能等诸多的科学特性,也无不都是数学的特性。
(二)数学中的科学思想方法
无论是实证方法、理性方法、臻美方法,还是科学发现中的类比推理、合情推理、直觉和灵感,无不与数学的发现方法和模式完全相同和一致。法国著名科学家、哲学家庞加莱就较为详尽地论述了“数学美”和“数学直觉”在数学发现和学习中的作用,指出:“数学的美感、数和形的各谐感、几何学的雅致感,这是一切真正的数学家都知道的审美感……缺乏这种审美感的人永远不会成为真正的创造者”;〔4〕“没有直觉,年轻人在理解数学时便无从着手;他们不可能学会热爱它,他们从中看到的只是空洞的玩弄辞藻的争论;尤其是,没有直觉,他们永远也不会有应用数学的能力……如果直觉对学生是有用的,那么对有创造性的科学家来说,它更是须臾不可或缺的”〔5〕。
(三)数学中的科学精神
科学精神究竟包括哪一些?到目前为止,说法不一。数学体现的科学精神有:求真、求实、客观的精神,合理怀疑、批判、创新的精神,民主、平等、合作的精神,不断探索、顽强执著、锲而不舍的精神,等等。
(四)数学的科学应用
数学的产生和发展同其他科学一样,来自于问题。这里的问题一般可分为实际问题和理论问题两类。科学所研究的自然界无疑是实际问题的源泉,如作为世界上发展最早、历史最长的天文学之一的中国古代天文学,它所研究的历法编算和天象观测与数学就有着密切的联系。实际上,当时的数学家也就是天文学家,许多数学成果都是在编算历法的过程中得到的,如分数运算、勾股测量术、剩余定理、内插法、高次方程等。不仅如此,科学的理论问题也是数学研究的问题来源,一个著名的例子就是爱因斯坦相对论的理论问题促成了黎曼几何的产生。
三、数学教育的“数学科学价值”
数学教育的“数学科学价值”本应是没有疑问的,但现在却成了一个复杂的课题。随着人们对数学的本质和价值的认识的不断发展,人们在反思如何认识数学教育中数学的“科学性”与“人文性”的关系,如何看待中小学数学内容的性质定位和价值取向,中小学究竟应该教授什么样的数学等若干认识论和价值论的问题。
在我国传统考试制度下,“精英教育”“天才教育”由来已久,似已形成“中国的传统”,而且自20世纪90年代以来,大有愈演愈烈之势(显然,基础教育不应是“精英教育”或“天才教育”)。这种教育思想和社会思潮对数学课程和数学教学的影响是十分深刻而重大的,致使不少人对过去的数学教育提出种种批评。有的人认为这种数学教育是“培养数学家的教育”,是“数学天才的教育”;有的人认为它只是注重数学的科学价值取向,忽视了人文价值取向;等等。这些批评在一定程度上有其合理性。显然,数学教育不应是“培养数学家的教育”或“数学天才的教育”。但是,我们还应该仔细地分析和思考一下这样几个问题:在什么意义上讲过去的数学教育是“培养数学家的教育”或“数学天才的教育”?美国所提倡的“大众数学”“问题解决”等观念和改革是否一定是公正、合理的数学课程价值取向(或者说一定符合我国的国情)?如何把握数学课程中数学的“科学性”与“人文性——数学教育的“数学方面”与“教育方面”两者之间的关系?这些问题有待我们作进一步的分析和思考。
数学教育不是“数学”与“教育”的简单相加,但至少包括这样两个方面,即“数学”既是教育的“目的”,也是教育的“手段”。作为手段,学生通过学习数学(主要是知识、理论及相应的数学活动,如数学解题、数学证明等)来提高思维能力和分析问题解决问题的能力,形成良好的个性品质和心理结构,增强民族的自尊心和自豪感;作为目的,学生要学会数学、理解数学、掌握数学,即要通过数学教育使学生获得基础的数学知识、基本的数学技能和重要的数学思想方法,形成正确的数学观和一定的数学意识。根据“目的与手段相统一”的哲学原理,掌握数学知识是至关重要的;忽视知识,实际上“在很大程度上是形而上学思维方式的产物,割裂了知识与方法、知识与能力之间的关系”〔6〕。“可以相信,无论什么时候,扎实的知识功底、广博的知识视野、合理的知识结构和良好的知识素养,都是教育所要追求的目标,这在知识激增时代也不例外,甚至更加重要。通过知识而获得发展,这算得上是一条颠扑不破的教育真理”。〔7〕这表明,数学教育的“数学方面”与“教育方面”两者是统一的,两者之间必然要保持一定的均衡,忽视哪一方面都是不合理的、不公正的。
美国1989年出台《学校数学课程与评价标准》,后来颁行《数学教师专业标准》(1991)和《学校数学评估标准》(1995),并实行数学课程改革,就实施的总体结果来讲是事与愿违。据第三次“国际数学与科学教育研究”调查表明,美国学生的表现与人们的期望相距甚远,其中八年级和十二年级学生的测试成绩远远低于其他国家,四年级学生也只达到平均水平。对此,纽约大学的Fran Curcio教授指出其原因有七条,即:忽视基本计算;对问题仅有近似解答就足够了;数学教学只有惟一的方法;与标准一致的教材就是支持改革的;没有有效的研究来支持改革;具体的经验能自动导致抽象;现代技术在数学中的使用等于教学改革。〔8〕国内外学者还就“大众数学”“开放题”“过分重视应用”等问题的局限性和所带来的后果进行了理性分析,认为,使数学越来越“简单化”“实用化”和“生活化”,最终学生所学到的将不是数学,而是别的什么东西,而且并不能真正调动学生学习数学的积极性,反而使学生感到数学是无意义和毫无用处的。〔9〕
当前,我国的数学教育(包括其他的学科教育)不仅加重了学生的负担,而且数学已成为筛选学生的“筛子”。这是由于我国社会、经济、传统文化诸多因素综合作用造成的,决不能不加分析地把一切责任都归咎于数学课程。
综上所述,在任何情况下,数学仍然是数学(数学是文化,它首先应该是“数学科学”,核心也是“数学科学”),数学教育决不可忽视其“数学科学价值”——基础知识、基本技能和体现数学本质的数学活动(如数学推理、数学证明、数学思维、数学理性)。也只有这样,才能真正实现数学教育的“人文价值”。
7. 初中生课外班数学多少钱辅导一课时
专业的一对一辅导能够让孩子个性化、多方位、多维度的综合成长,而且一对一辅导教学模式更具人性化特点,注重教师与学生之间的情感交流,使教师成为学生学习中的指路明灯,生活的成长伙伴。因此现在选择一对一课外辅导的人越来越多,那么哪里的一对一课外辅导比较好,一般需要多少钱?
哪里的一对一课外辅导比较好?阿卡索早在2011年就成立了,是较早进入在线英语培训行业的机构,阿卡索一直致力于打造最高效最优秀的外教平台,让国内的英语学习者可以直接与一线外籍教师无缝接触,学习原汁原味的地道英语,打破中国人教中国人和听录音看录像的传统英语学习模式,让学习者摆脱“哑巴英语”和“洋泾浜口音”,做到学以致用,直接开口与外国人交流。服务理念先进,在打造地道的英语培训的同时也致力于为足够多的人给予服务,降低价格标准。顺便分享一个他们免费领取的价值155元的纯外教试听课,外教发音超标准,一对一的教学模式,上课互动很多,有多个课程体系,还提供个性化定制教学服务,提升英语水平,效果扛扛滴,不信,可以来免费试听:
https://www.acadsoc.com.cn/lps/lp-tutor/mix-tutor.htm(基础外教)
https://www.acadsoc.com.cn/lps/lp4.htm(基础口语)
哪里的一对一课外辅导比较好,一般需要多少钱?下面我把阿卡索的收费情况分享给大家:
阿卡索课程价格表(分为月卡套餐和次卡套餐,月卡、次卡套餐中分为国际套餐和定制套餐。)
国际月套餐:
6个月4099—180节课—每节单价22.7;12个月6988—360节课—每节单价19.4;24个月11488—720节课—每节单价15.9;36个月14999—1080节课—每节单价13.8。 国际次套餐:
180节课4988—有效期12个月—单价27.7;360节课8388—有效期24个月—单价23.3;720节课14388—有效期48个月—单价19.9;1080节课18888—有效期72个月—单价17.4。零基础初学者套餐:
3个月6688—90节课—每节单价74.3;6个月12888—180节课—每节单价71.6。 零基础进阶者套餐:
3个月5588—中教节课60—外教节课30—每节单价62.08;6个月10888—中教节课120—外教节课60—每节单价60.48。 定制月套餐:
1个月3288,3个月8888,6个月15888,12个月25888,24个月49888,36个月73888。 定制次卡套餐:
30节课3488/有效期3个月;90节课9588/有效期9个月;180节课16888/有效期18个月;360节课27888/有效期36个月;720节课53888/有效期72个月。
8. 小学数学培训老师一节课多少钱
小学数学培训抄老师一节课一般在袭50~1000左右。根据地域和老师水平,收费价格有变化。所在地越发达,老师水平或名气越高收费一般越高。
课外辅导是课堂教学的一种补充,是适应个别差异、因材施教的重要措施。选择培训老师时,一定要聘用正规机构或学校的老师,防止受骗。
9. 培训机构的课程是不是都一样,谁家的课程含金量多一些呢
每家都每家的好,看培训机构的规模,规模大的话,老师的授课能力也会专业些。