導航:首頁 > 技能課程 > 大數據崗位培訓課程

大數據崗位培訓課程

發布時間:2021-01-18 21:56:20

A. 大數據培訓課程大綱去哪裡學

大數據開發工程師課程體系——Java部分。
第一階段:靜態網頁基礎
1、學習Web標准化網頁製作,必備的HTML標記和屬性
2、學習HTML表格、表單的設計與製作
3、學習CSS、豐富HTML網頁的樣式
4、通過CSS布局和定位的學習、讓HTML頁面布局更加美觀
5、復習所有知識、完成項目布置
第二階段:JavaSE+JavaWeb
1、掌握JAVASE基礎語法
2、掌握JAVASE面向對象使用
3、掌握JAVASEAPI常見操作類使用並靈活應用
4、熟練掌握MYSQL資料庫的基本操作,SQL語句
5、熟練使用JDBC完成資料庫的數據操作
6、掌握線程,網路編程,反射基本原理以及使用
7、項目實戰 + 擴充知識:人事管理系統
第三階段:前端UI框架
1、JAVASCRIPT
2、掌握Jquery基本操作和使用
3、掌握註解基本概念和使用
4、掌握版本控制工具使用
5、掌握easyui基本使用
6、項目實戰+擴充知識:項目案例實戰
POI基本使用和通過註解封裝Excel、druid連接池資料庫監聽,日誌Log4j/Slf4j
第四階段:企業級開發框架
1、熟練掌握spring、spring mvc、mybatis/
2、熟悉struts2
3、熟悉Shiro、redis等
4、項目實戰:內容管理系統系統、項目管理平台流程引擎activity,爬蟲技術nutch,lucene,webService CXF、Tomcat集群 熱備 MySQL讀寫分離
以上Java課程共計384課時,合計48天!
大數據開發工程師課程體系——大數據部分
第五階段:大數據前傳
大數據前篇、大數據課程體系、計劃介紹、大數據環境准備&搭建
第六階段:CentOS課程體系
CentOS介紹與安裝部署、CentOS常用管理命令解析、CentOS常用Shell編程命令、CentOS階段作業與實戰訓練
第七階段:Maven課程體系
Maven初識:安裝部署基礎概念、Maven精講:依賴聚合與繼承、Maven私服:搭建管理與應用、Maven應用:案列分析、Maven階段作業與實戰訓練
第八階段:HDFS課程體系
Hdfs入門:為什麼要HDFS與概念、Hdfs深入剖析:內部結構與讀寫原理、Hdfs深入剖析:故障讀寫容錯與備份機制、HdfsHA高可用與Federation聯邦、Hdfs訪問API介面詳解、HDFS實戰訓練、HDFS階段作業與實戰訓練
第九階段:MapRece課程體系
MapRece深入剖析:執行過程詳解、MapRece深入剖析:MR原理解析、MapRece深入剖析:分片混洗詳解、MapRece編程基礎、MapRece編程進階、MapRec階段作業與實戰訓練
第十階段:Yarn課程體系
Yarn原理介紹:框架組件流程調度
第十一階段:Hbase課程體系
Yarn原理介紹:框架組件流程調度、HBase入門:模型坐標結構訪問場景、HBase深入剖析:合並分裂數據定位、Hbase訪問Shell介面、Hbase訪問API介面、HbaseRowkey設計、Hbase實戰訓練
第十二階段:MongoDB課程體系
MongoDB精講:原理概念模型場景、MongoDB精講:安全與用戶管理、MongoDB實戰訓練、MongoDB階段作業與實戰訓練
第十三階段:Redis課程體系
Redis快速入門、Redis配置解析、Redis持久化RDB與AOF、Redis操作解析、Redis分頁與排序、Redis階段作業與實戰訓練
第十四階段:Scala課程體系
Scala入門:介紹環境搭建第1個Scala程序、Scala流程式控制制、異常處理、Scala數據類型、運算符、Scala函數基礎、Scala常規函數、Scala集合類、Scala類、Scala對象、Scala特徵、Scala模式匹配、Scala階段作業與實戰訓練
第十五階段:Kafka課程體系
Kafka初窺門徑:主題分區讀寫原理分布式、Kafka生產&消費API、Kafka階段作業與實戰訓練
第十六階段:Spark課程體系
Spark快速入門、Spark編程模型、Spark深入剖析、Spark深入剖析、SparkSQL簡介、SparkSQL程序開發光速入門、SparkSQL程序開發數據源、SparkSQL程序開DataFrame、SparkSQL程序開發DataSet、SparkSQL程序開發數據類型、SparkStreaming入門、SparkStreaming程序開發如何開始、SparkStreaming程序開發DStream的輸入源、SparkStreaming程序開發Dstream的操作、SparkStreaming程序開發程序開發--性能優化、SparkStreaming程序開發容錯容災、SparkMllib 解析與實戰、SparkGraphX 解析與實戰
第十七階段:Hive課程提體系
體系結構機制場景、HiveDDL操作、HiveDML操作、HiveDQL操作、Hive階段作業與實戰訓練
第十八階段:企業級項目實戰
1、基於美團網的大型離線電商數據分析平台
2、移動基站信號監測大數據
3、大規模設備運維大數據分析挖掘平台
4、基 於互聯網海量數據的輿情大數據平台項目
以上大數據部分共計學習656課時,合計82天!
0基礎大數據培訓課程共計學習130天。
以上是我們加米穀的大數據培訓課程大綱!

B. 大數據開發培訓課程內容有哪些

你好,大數據基礎技術覆蓋數據採集、數據預處理、分布式存儲、NOSQL資料庫、多模式計算(批處理、在線處理、實時流處理、內存處理)、多模態計算(圖像、文本、視頻、音頻)、數據倉庫、數據挖掘、機器學習、人工智慧、深度學習、並行計算、可視化等各種技術范疇和不同的層面。另外大數據應用領域廣泛,各領域採用技術的差異性還是比較大的。知道魔據大數據從各方面來說都是不錯的,但是學習需要自己足夠努力,大數據本身就是有點難度,但是只要慢慢熟悉了是沒什麼問題的,加油。

C. 大數據培訓內容,大數據要學哪些課程

java

數據來結構、源關系型資料庫、linux系統操作

hadoop離線分析、Storm實時計算、spark內存計算

D. 大數據培訓課程好學嗎

世界上沒有難學的知識有沒有難以教授的學生。這實際上是一個心態的問題,所謂世上無難事,只怕有心人。大數據方向很多:1、大數據開發;2、大數據分析;3、大數據可視化

目前大數據培訓機構提供的課程大約有兩種:一是大數據開發,二是數據分析與挖掘。以我的經驗來看,大數據開發相對會比較難一點,在我這里的學生認為。大數據的知識點很多,技術體系復雜,需要很認真的學習。大數據培訓一般指大數據開發,不需要數學和統計學基礎的,大數據分析需要數學和統計學基礎。

E. 大數據培訓課程都包含哪些內容

老男孩教育的大數據培訓課程內容包括:Java、Linux、回Hadoop、Hive、Avro與Protobuf、ZooKeeper、HBase、Phoenix、Redis、Flume、SSM、Kafka、Scala、Spark、azkaban、Python與大答數據分析等

F. 哪裡的大數據培訓課程比較好

第一個問題:大數據好不好學?
總結了一下幾種情況,供參考。
1.對於有開發經驗的同學來說,學大數據還是比較容易的,比如你現在是做JAVA開發的,那麼你轉行大數據做JAVA大數據開發,只需要把大數據框以及相關大數據技術學到,再輔以一定的項目練習,基本就可以幹活了;如果你現在是做的Python開發,同樣你也只需要學好大數據框架以及相關技術,再輔以相關項目就可以從事Python大數據開發了。
2.如果你是零基礎,學習能力一般,在理解概念會稍微慢一點,比如學到JAVA面向對象的時候,這部分同學就比較懵了,但是只要肯付出,願意多問,願意去琢磨,也能得到理想的結果。
3.零基礎學習能力很強,比如畢業於211、985高校,相對來說,學起來就比較輕松。在我們的大數據培訓班,50%以上都是這樣的學生,不得不說,學習能力強,學啥都快,不光是編程。
第一種有開發經驗,他們會去主動學習;第三種學習能力強,他們相信自己能學會。但第二種他們缺乏自信,也是比較猶豫的一部分人。
三種人中,也以第二種學生居多。如果想轉行,三點建議,可供參考。
1.不要猶豫,先學。先找學習資料,從零開始學,只有你真的開始去學了,才能知道好不好學。
2.統招本科學歷,學大數據,找大數據開發工作。目前一線城市的企業,對大數據開發工程師的學歷要求都是本科。
3.大專學歷,學JAVA,找JAVA開發工作。學歷不夠,先把JAVA學好,找一份JAVA開發工作,如果對大數據感興趣,可做2年JAVA開發後,再轉大數據,用開發經驗來彌補學歷的短板。
希望對你有幫助~

G. 大數據需要學習那些內容學完之後可以做哪些工作

不同的大數據培訓機構培訓的課程內容也是不同的,但是比較好的大數據培訓機構一般是根據企業需求來研發課程內容的,所以比較好的大數據培訓課程中包含的知識點是差不多的,今天小編就以優就業大數據培訓課程為例來給大家講講大數據培訓什麼內容,培訓完都可以從事什麼工作?

優就業的大數據培訓課程內容主要有六個階段,分別為第一階段Java基礎、第二階段JavaEE核心、第三階段Hadoop生態體系、第四階段Spark生態體系、第五階段項目實戰+機器學習、第六階段就業指導等。下面小編來詳細說說每個階段具體的學習內容。

第一階段Java基礎主要知識點有:Java基礎語法、面向對象編程、常用類和工具類、集合框架體系、異常處理機制、文件和IO流、移動開戶管理系統、多線程、枚舉和垃圾回收、反射、JDK新特性、通訊錄系統等。

第二階段JavaEE核心主要知識點有:前端技術、資料庫、JDBC技術、伺服器端技術、Maven、Spring、SpringBoot、Git等。

第三階段Hadoop生態體系包含的知識點主要有:Linux、Hadoop、ZooKeeper、Hive、HBase、Phoenix、Impala、Kylin、Flume、Sqoop&DataX、Kafka、Oozie&Azkaban、、Hue、智慧農業數倉分析平台等

第四階段Spark生態體系的主要知識點有:Scala、Spark、交通領域汽車流量監控項目、Flink等。

第五階段項目實戰+機器學習的核心知識點有:高鐵智能檢測系統、電信充值、中國天氣網、機器學習等。

第六階段就業指導則是在學員學完課程內容後提供模擬面試、就業推薦等服務,幫助學員盡快就業。

學完全部大數據培訓課程內容後,學員出來找工作可以找大數據運維師、大數據開發師等崗位。

H. 大數據培訓學校學哪些內容

以下介紹的課程主要針對零基礎大數據工程師每個階段進行通俗易懂簡易介紹,方面大家更好的了解大數據學習課程。課程框架是科多大數據的零基礎大數據工程師課程。
一、 第一階段:靜態網頁基礎(HTML+CSS)
1. 難易程度:一顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:html常用標簽、CSS常見布局、樣式、定位等、靜態頁面的設計製作方式等
4. 描述如下:
從技術層面來說,該階段使用的技術代碼很簡單、易於學習、方便理解。從後期課程層來說,因為我們重點是大數據,但前期需要鍛煉編程技術與思維。經過我們多年開發和授課的項目經理分析,滿足這兩點,目前市場上最好理解和掌握的技術是J2EE,但J2EE又離不開頁面技術。所以第一階段我們的重點是頁面技術。採用市場上主流的HTMl+CSS。
二、 第二階段:JavaSE+JavaWeb
1. 難易程度:兩顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:java基礎語法、java面向對象(類、對象、封裝、繼承、多態、抽象類、介面、常見類、內部類、常見修飾符等)、異常、集合、文件、IO、MYSQL(基本SQL語句操作、多表查詢、子查詢、存儲過程、事務、分布式事務)JDBC、線程、反射、Socket編程、枚舉、泛型、設計模式
4. 描述如下:
稱為Java基礎,由淺入深的技術點、真實商業項目模塊分析、多種存儲方式的設計
與實現。該階段是前四個階段最最重要的階段,因為後面所有階段的都要基於此階段,也是學習大數據緊密度最高的階段。本階段將第一次接觸團隊開發、產出具有前後台(第一階段技術+第二階段的技術綜合應用)的真實項目。
三、 第三階段:前端框架
1. 難易程序:兩星
2. 課時量(技術知識點+階段項目任務+綜合能力):64課時
3. 主要技術包括:Java、Jquery、註解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui
4. 描述如下:
前兩個階段的基礎上化靜為動,可以實現讓我們網頁內容更加的豐富,當然如果從市場人員層面來說,有專業的前端設計人員,我們設計本階段的目標在於前端的技術可以更直觀的鍛煉人的思維和設計能力。同時我們也將第二階段的高級特性融入到本階段。使學習者更上一層樓。
四、 第四階段:企業級開發框架
1. 難易程序:三顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬蟲技術nutch,lucene,webServiceCXF、Tomcat集群和熱備、MySQL讀寫分離
4. 描述如下:
如果將整個JAVA課程比作一個糕點店,那前面三個階段可以做出一個武大郎燒餅(因為是純手工-太麻煩),而學習框架是可以開一個星巴克(高科技設備-省時省力)。從J2EE開發工程師的任職要求來說,該階段所用到的技術是必須掌握,而我們所授的課程是高於市場(市場上主流三大框架,我們進行七大框架技術傳授)、而且有真實的商業項目驅動。需求文檔、概要設計、詳細設計、源碼測試、部署、安裝手冊等都會進行講解。
五、 第五階段: 初識大數據
1. 難易程度:三顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:大數據前篇(什麼是大數據,應用場景,如何學習大資料庫,虛擬機概念和安裝等)、Linux常見命令(文件管理、系統管理、磁碟管理)、Linux Shell編程(SHELL變數、循環控制、應用)、Hadoop入門(Hadoop組成、單機版環境、目錄結構、HDFS界面、MR界面、簡單的SHELL、java訪問hadoop)、HDFS(簡介、SHELL、IDEA開發工具使用、全分布式集群搭建)、MapRece應用(中間計算過程、Java操作MapRece、程序運行、日誌監控)、Hadoop高級應用(YARN框架介紹、配置項與優化、CDH簡介、環境搭建)、擴展(MAP 端優化,COMBINER 使用方法見,TOP K,SQOOP導出,其它虛擬機VM的快照,許可權管理命令,AWK 與 SED命令)
4. 描述如下:
該階段設計是為了讓新人能夠對大數據有一個相對的大概念怎麼相對呢?在前置課程JAVA的學習過後能夠理解程序在單機的電腦上是如何運行的。現在,大數據呢?大數據是將程序運行在大規模機器的集群中處理。大數據當然是要處理數據,所以同樣,數據的存儲從單機存儲變為多機器大規模的集群存儲。
(你問我什麼是集群?好,我有一大鍋飯,我一個人可以吃完,但是要很久,現在我叫大家一起吃。一個人的時候叫人,人多了呢? 是不是叫人群啊!)
那麼大數據可以初略的分為: 大數據存儲和大數據處理所以在這個階段中呢,我們課程設計了大數據的標准:HADOOP大數據的運行呢並不是在咋們經常使用的WINDOWS 7或者W10上面,而是現在使用最廣泛的系統:LINUX。
六、 第六階段:大數據資料庫
1. 難易程度:四顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:Hive入門(Hive簡介、Hive使用場景、環境搭建、架構說明、工作機制)、Hive Shell編程(建表、查詢語句、分區與分桶、索引管理和視圖)、Hive高級應用(DISTINCT實現、groupby、join、sql轉化原理、java編程、配置和優化)、hbase入門、Hbase SHELL編程(DDL、DML、Java操作建表、查詢、壓縮、過濾器)、細說Hbase模塊(REGION、HREGION SERVER、HMASTER、ZOOKEEPER簡介、ZOOKEEPER配置、Hbase與Zookeeper集成)、HBASE高級特性(讀寫流程、數據模型、模式設計讀寫熱點、優化與配置)
4. 描述如下:
該階段設計是為了讓大家在理解大數據如何處理大規模的數據的同時。簡化咋們的編寫程序時間,同時提高讀取速度。
怎麼簡化呢?在第一階段中,如果需要進行復雜的業務關聯與數據挖掘,自行編寫MR程序是非常繁雜的。所以在這一階段中我們引入了HIVE,大數據中的數據倉庫。這里有一個關鍵字,數據倉庫。我知道你要問我,所以我先說,數據倉庫呢用來做數據挖掘分析的,通常是一個超大的數據中心,存儲這些數據的呢,一般為ORACLE,DB2,等大型資料庫,這些資料庫通常用作實時的在線業務。
總之,要基於數據倉庫分析數據呢速度是相對較慢的。但是方便在於只要熟悉SQL,學習起來相對簡單,而HIVE呢就是這樣一種工具,基於大數據的SQL查詢工具,這一階段呢還包括HBASE,它為大數據裡面的資料庫。納悶了,不是學了一種叫做HIVE的數據「倉庫」了么?HIVE是基於MR的所以查詢起來相當慢,HBASE呢基於大數據可以做到實時的數據查詢。一個主分析,另一個主查詢
七、 第七階段:實時數據採集
1. 難易程序:四顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:Flume日誌採集,KAFKA入門(消息隊列、應用場景、集群搭建)、KAFKA詳解(分區、主題、接受者、發送者、與ZOOKEEPER集成、Shell開發、Shell調試)、KAFKA高級使用(java開發、主要配置、優化項目)、數據可視化(圖形與圖表介紹、CHARTS工具分類、柱狀圖與餅圖、3D圖與地圖)、STORM入門(設計思想、應用場景、處理過程、集群安裝)、STROM開發(STROM MVN開發、編寫STORM本地程序)、STORM進階(java開發、主要配置、優化項目)、KAFKA非同步發送與批量發送時效,KAFKA全局消息有序,STORM多並發優化
4. 描述如下:
前面的階段數據來源是基於已經存在的大規模數據集來做的,數據處理與分析過後的結果是存在一定延時的,通常處理的數據為前一天的數據。
舉例場景:網站防盜鏈,客戶賬戶異常,實時徵信,遇到這些場景基於前一天的數據分析出來過後呢?是否太晚了。所以在本階段中我們引入了實時的數據採集與分析。主要包括了:FLUME實時數據採集,採集的來源支持非常廣泛,KAFKA數據數據接收與發送,STORM實時數據處理,數據處理秒級別
八、 第八階段:SPARK數據分析
1. 難易程序:五顆星
2. 課時量(技術知識點+階段項目任務+綜合能力)
3. 主要技術包括:SCALA入門(數據類型、運算符、控制語句、基礎函數)、SCALA進階(數據結構、類、對象、特質、模式匹配、正則表達式)、SCALA高級使用(高階函數、科里函數、偏函數、尾迭代、自帶高階函數等)、SPARK入門(環境搭建、基礎結構、運行模式)、Spark數據集與編程模型、SPARK SQL、SPARK 進階(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA與SOCKET、編程模型)、SPARK高級編程(Spark-GraphX、Spark-Mllib機器學習)、SPARK高級應用(系統架構、主要配置和性能優化、故障與階段恢復)、SPARK ML KMEANS演算法,SCALA 隱式轉化高級特性
4. 描述如下:
同樣先說前面的階段,主要是第一階段。HADOOP呢在分析速度上基於MR的大規模數據集相對來說還是挺慢的,包括機器學習,人工智慧等。而且不適合做迭代計算。SPARK呢在分析上是作為MR的替代產品,怎麼替代呢? 先說他們的運行機制,HADOOP基於磁碟存儲分析,而SPARK基於內存分析。我這么說你可能不懂,再形象一點,就像你要坐火車從北京到上海,MR就是綠皮火車,而SPARK是高鐵或者磁懸浮。而SPARK呢是基於SCALA語言開發的,當然對SCALA支持最好,所以課程中先學習SCALA開發語言。
在科多大數據課程的設計方面,市面上的職位要求技術,基本全覆蓋。而且並不是單純的為了覆蓋職位要求,而是本身課程從前到後就是一個完整的大數據項目流程,一環扣一環。
比如從歷史數據的存儲,分析(HADOOP,HIVE,HBASE),到實時的數據存儲(FLUME,KAFKA),分析(STORM,SPARK),這些在真實的項目中都是相互依賴存在的。

I. 大數據培訓課程大綱要學什麼課程

課綱不一樣,看是大數據開發還是大數據分析了,我學的大數據分析可視化,學的主要有Python入門、sql、oracle、tableau、帆軟、Informatica、Excel等等
我剛出來半年,視頻錄播可能還不算落後,有視頻可***

閱讀全文

與大數據崗位培訓課程相關的資料

熱點內容
公辦春考培訓學校 瀏覽:734
九江船員培訓中心 瀏覽:5
台州繪墨藝術培訓有限公司 瀏覽:207
非科級後備幹部集中培訓總結 瀏覽:419
東北舞蹈藝考培訓機構 瀏覽:427
民營企業家培訓班結業式 瀏覽:59
2017入黨培訓內容 瀏覽:828
順德駕駛員培訓中心 瀏覽:125
姜堰市三水培訓中心網站 瀏覽:263
電動汽車維修培訓視頻 瀏覽:737
機關黨務幹部培訓內容 瀏覽:423
企業培訓為自己工作心得體會 瀏覽:512
線上培訓工作 瀏覽:303
泉州舞蹈培訓招聘 瀏覽:709
禮儀培訓三年計劃書 瀏覽:926
稅務學校培訓個人總結 瀏覽:508
專業技術人才初聘培訓小結 瀏覽:980
是實驗室設備安全培訓 瀏覽:54
北京砂鍋米線培訓學校 瀏覽:127
幹部教育培訓工作意見建議 瀏覽:836